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Abstract—This paper briefly describes a finite element model previously developed for studying the free
vibration characteristics of a single sagged cable hanging freely from two supports. This element, which
allows elastic deformations, is used to determine the natural frequencies and normal modes of vibration of
3-D cable networks. A parametric study is made to predict the influence of various parameters, such as
rise/span ratio of cables, initial pretension, cable rigidity, linear dimensions and surface curvature, on the
natural frequencies and normal modes of vibration of 3-D cable nets. The results for various configurations
are presented in the form of non-dimensional plots.

1. INTRODUCTION

Up to recently, the available literature on cable structures focussed principally on static linear
behaviour. However, emphasis has now shifted to the important problem of dynamic instability
including the phenomenon of flutter. The effects of flutter on cable nets have long been
recognized, but the published literature has dealt in detail only with freely suspended cables;
and only a few isolated design problems dealing with 3-D cable nets have been investigated. To
enable evaluation of the response of the cable net to time-dependent forces such as aerody-
namic and earthquake forces, it is necessary to determine certain basic characteristics of the
network, including natural frequencies and normal modes of vibration.

Since the analysis of more practical configurations of cable nets is usually quite complex,
investigators have resorted to simplified mathematical models for dynamic analysis of these
systems. The most popular models are the continuous model[1-3} in which the cable net is
modelled as an equivalent membrane; and the lumped mass model[1, 2, 4-8] in which all masses
and loads are lumped at cable intersections (nodes). Investigators have found it necessary to
impose quite restrictive limitations on the geometry of the system and the types of loading that
can be accommodated in analysis.

The finite element technique has proved very effective for dealing with the dynamics of
sagged cables[9, 10]. It enables quite detailed parametric studies to be done with a view to
simplifying analysis as well as design. Leonard{11] has used a finite element to obtain the linear
frequencies of a flat network problem previously analysed by Shore and Chaudhari[2]. Using
the finite element method, Jensen[12] has studied the dynamic behaviour of suspension
structures by idealizing the cable structure into a set of component string elements. He has also
used plane constant strain elements to study membrane structures.

This paper reports an investigation using a finite element model to study the free vibration
characteristics of 3-D cable networks. The results of an example problem are compared with
those reported by Jensen[12]. A parametric study is then outlined to predict the influence of
various parameters on the free vibration characteristics of 3-D cable nets; and the results are
presented in the form of non-dimensional plots. It is surprising that in-plane motion, which may
be critical for deep cable nets, seems not to have been considered in the technical literature.
This aspect of vibration response is also discussed in the paper.
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2. OUTLINE OF THEORETICAL DEVELOPMENT OF FINITE ELEMENT

The numerical procedure used in the parametric study reported in this paper is based on
representing the prestressed net as a series of finite length elements with linear elastic
properties and possessing zero flexural rigidity. The elements are incapable of resisting
compression and are connected at the nodes to form a 3-D network. Each node is assumed to
have three degrees of freedom u, v and w, along the directions of the three orthogonal axes, and
the extensional stiffness of the cable element is taken into account. The stiffness and consistent
mass matrices associated with the equations of motion are derived using the principle of virtual
work in its variational form. This formulation gives the stiffness and mass matrices of the
element directly in terms of global coordinates and the displacements of the nodes, therefore,
the method has the advantage of simplicity both in formulation and programming.

In an earlier investigation[9, 14] the equation of motion has been derived in the form:

(m}{dA} + [k HdA} + [k {dA} + [kci}{dA} + [kcoHdA} = {0} (N

where, the vector {A} represents nodal coordinates and {dA} is the displacement vector. The
matrix [k.] is the modified form of the conventional symmetric stiffness matrix associated with
extension of the element; and [k] is the geometric stiffness matrix. The matrices [k¢] and [kc,]
account for nonlinear geometric effects and, respectively, contain the first and second order
terms of the displacements {dA}. These correction matrices take into account the changes in
tension and in element length due to displacement.

For the typical element, ij, of length, /;, under a tension, T;:
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where [N(x)] is the shape function relating the displacement field with the nodal coordinates;
and [N'] is the ordinary differentiation of [N] with respect to x. The term k,(= EA) represents
the extensional rigidity of the element and £(= x/I;) varies from 0 to 1. In the case of a straight
element:

INI=[(-81) & M

and

1
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i
where [I] is a (3 X 3) unit matrix and [N’] contains constant terms. Therefore,
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The consistent mass matrix is given by

i [ (Goriee- 5 1]

The general equation (1) of motion is nonlinear. However, from the theoretical studies of
freely suspended sagged cables[13] it has been observed that nonlinearity is slight. Therefore,
in the parametric study presented in this paper, only small amplitude oscillations are consi-
dered. Accordingly, only the first three terms of eqn (1) are retained, giving:

[m}{dA}+ [k, HdA}+ [ksKdA} = {0}. 1y

Substituting [N']7[N'] from eqn (9) into eqns (4) and (5), the matrices [kg] and [k.] are given
by:

T, I -1
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I, m and n being the direction cosines of element, ij, with respect to the global cartesian
coordinate system and are given by:

I=(x;-xMl, m=(y;—y)l; and =(z;— z)/l,, (15)

A computer program based on the theory outlined above has been developed and tested on a
variety of realistic problems. The program proves to be extremely efficient. Since all the
computations were carried out on the computer in an integrated manner, it was possible in the
study to vary tensions in the cables, boundary conditions and linear dimensions, etc. systema-
tically.

The effects of various parameters on the modes of vibration and corresponding frequencies
are studied. These parameters include rise/span ratio of cables, initial pretension, cable rigidity,
linear dimension and curvature. In the basic configurations used in the study, the self weight
has been taken as the initial load condition for calculating the equilibrium configurations about
which vibrations are assumed to occur.

3. NUMERICAL RESULTS

The method has been illustrated by a numerical problem and the results compared with
those obtained using the procedure described by an earlier investigator. The example deals with
a 3-D cable network (Fig. 1), supported by edge cables. This network, which has been
theoretically and experimentally investigated by Jensen[12], has a span of 2.1 m and a rise of
0.15m, and carries a mass of 0.50 kg at each of the internal nodes.

In the previous investigation, the two lowest experimental frequencies were obtained by
initiating vibrations by sudden release of an applied load. Jensen determined the higher modes
of vibration by isolating them using an excitation technique. The frequencies reported by
Jensen[12] are compared in Table 1 with those obtained in the authors’ investigation.

4. PARAMETRIC STUDY

In the parametric study, a cable element is a segment of the cable between two cable
intersections. The parameters involved in a cable net study are the mass per unit length,
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Fig. 1. Example problem of cable net with edge cables.

Table 1. Comparison of frequencies of 3-D network (Fig. 1)

Frequencies , in Hertz

Mode Jensen [1]] Authors' Finite Element
No- Analytical Experimental Deviation, % * Analvtical Peviation, % M
1 8.27 8.50 -2.71 8.28 - 2.59
2 8.71 8.95 - 2.70 8.95 0.0
3 9.55 9.30 + 270 9.73 + 4 60
4 9.86 10.00 - 1.40 10.03 + 0.30
3 10.07 10.70 - 5.90 10.51 - 1.78
6 10.55 10.70 - 1.40 10.66 - 0.37
7 12.11 11.80 + 2.60 12.17 + 3,14
8 12.34 12.15 + 150 12.46 + 2,55
9 - 12.95 - - -
10 13,04 - - 13.48 -

+  Deviations are computed with respect to experimental frequencies
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p(= vlg): cable rigidity, k,(= EA); linear dimension, L. initial tension, T': rise/span ratio of the
cable and the curvature of cable net surface.

In studying the effect of curvature on the free vibration characteristics, two types of 3-D
cable nets have been analysed. The first type referred to as Type A, consists of a hyperbolic
paraboloid network bounded by straight line generators and having cables parallel to these
generators (Fig. 2a). The second type, referred to as Type B, consists of a hypar cable net
having curved boundaries (Fig. 2b) and with cables having the same basic properties as those in
Type A. The basic parameters of the system are as follows: linear dimension or span,
Lyoy=L,=9%in. (2.3m); rise, h,=h,=1125in. (0.28m); weight per unit length, y=
0.0026 Ib/in. (0.455 N/m); metallic area of cables, A = 0.0125 in? (8.0 mm?); modulus of elasticity,
E =10 x 10° psi (70 GPa); and horizontal component of tension, T,o= To=4001b (1780 N).

RISE /SPAN = /8
UNLOADED GEOMETRY  2:-h, (1-8%1(i-8)

a) TYPE A NETWORK

7S
»
Jmse <
RISE /SPAN RATIO = (/8
SPAN = 90" |
y | :

b) TYPE B NETWORK
Fig. 2. Basic cable configurations.

5. EFFECTS OF PARAMETERS

5.1 Cable rigidity and mass per unit length

With other parameters being held constant, an increase in cable rigidity resuits from an
increase in the cable cross-sectional area, A. It has been found in the study that the computed
frequencies are unaltered by a variation of k; or p. A careful inspection of the element mass
and stiffness matrices (eqns 10, 12 and 13), reveals that the element stiffness matrices are
mulitiplied either by (k; — T) or T, and that the elements of the mass matrix are multiplied by y.
Any change in area (and hence in y) results in a corresponding change in k, and T, therefore,
the resulting frequencies are unaltered.
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5.2 Linear dimension

The linear dimensions of the basic structure are varied in steps of 45in. (1.14 m) over the
range 45in. (1.14 m) to 225 in. (5.72 m). The resulting frequencies for the two types of nets are
plotted in Figs. 3 and 4, which show that a hyperbolic relationship exists between frequency
and linear dimensions. The plot for the Type B network is shown in Fig. 4 on a logarithmic
scale to have a slope of unity. This indicates that frequencies are inversely proportional to span

or linear dimension.

FREQUENCY {Hz}
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Fig. 3. Variation of frequency with linear dimension (Type A network).
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5.3 Initial tension
The rise/span ratio of

B network, except that

TdTw=T,Ty=2.1.

FREQUENCY (Hz)

The free vibration of 3-D cable networks

both cable nets is held constant at 1/8, while the pretension in each
cable is varied from 200 Ib (890 N) to 1000 1b (4.45 kN). The calculated frequencies for the first
six modes are plotted in Figs. 5 and 6. When the results for the Type A network are plotted on a
logarithmic scale, a slope of 0.5 is obtained, indicating that the frequencies are proportional to
VT, i.e. frequencies correspond to taut string frequencies. A similar relationship holds for Type
at high tension the relationship at higher frequencies is slightly
nonlinear. The magnitude of pretension has been found to have no influence on mode shapes
for Type A network. However, in the case of Type B network, the mode shapes 1-3 are
independent of pretension, while modes 4 and 6 interchange their forms at a value of
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Fig. 5. Variation of frequency with pretension (Type A network).
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5.4 Riselspan ratio

The rise/span ratio for the X and Y cables (h,/L,o= h,/L,o) has been varied from 0 to 5/16
and the plots of natural frequency vs rise/span-ratio are shown in Figs. 7 and 8. The study
indicates that the transverse modes yield considerably lower frequencies than do the in-plane
modes. Therefore, in most practical problems, only transverse modes need be considered.

It can be seen (Fig. 7) that as the rise/span ratio of the Type A network is increased, the
mode shapes change. For rise/span = 0, the 4th, 5th and 6th mode shapes are identical. As the
rise/span ratio is increased the 4th mode deviates from Sth and 6th modes over the entire range
of rise/span ratios studied; the 2nd mode is identical to the 3rd, and the Sth mode is identical to
the 6th. However, the first natural frequency increases with rise/span ratio whereas all other
frequencies decrease.

For the Type B hypar network, the variation of natural frequencies with rise/span ratio is

120~
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30k
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Fig. 7. Natural frequency vs rise/span ratio (Type A network).
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given in Fig. 8 for the first four modes. In contrast to the Type A network formed by straight
line generators, the Type B network shows large variations in frequency with rise/span ratio,
ie. curvature has a pronounced effect on frequencies. At the common intersection point
obtained by connecting modes 1 and 4, these modes (I and 4) interchange forms. This
intersection point may be called a transition point, which shifts towards the right with an
increase in tension, 7, of the cables. Similar transition or cross-over points have been observed
in the study of single sagged cables[9,10). With tension values of 2001b (890 N), 4001b
(1.78 kN), 600 Ib (2.67 kN) and 800 Ib (3.56 kN), the corresponding transition points are obtained
at rise/span values of approximately 1/32, 1/20.5, 1/16.5 and 1/14.5, respectively. The frequen-
cies corresponding to the 2nd and 3rd modes are coincident, although there is a change in form
beyond rise/span values corresponding to transition points. It is interesting to note that the
transition point corresponds to the highest frequency for mode 1 for any rise/span ratio. At this
transition point the first mode with no nodal lines (half wave forms parallel to the X and Y
axes) changes to a mode with one nodal line (i.e. full wave form parallel to X and Y axes).

5.5 Surface curvature

The surface curvature [(84/L,.2) = (8hJL,) - (1/L,)] of the cable net surface can be varied
either by a change in rise/span ratio (h/L,) with linear dimension (L,) held constant, or by
varying the linear dimension while rise/span ratio is held constant. These two cases have been
studied in Sections 5.2 and 5.4, respectively, where it has been shown that the frequencies are
inversely proportional to linear dimension, therefore, it may be inferred that the frequencies are
linearly related to surface curvature. Since the Type A network consists of straight cables
having zero curvature, the frequencies are affected by surface curvature to a much lesser
degree than those of the Type B network. No change in mode shapes is observed as a result of
variation in linear dimension, so that mode shapes will also be independent of surface
curvature.

6. CONCLUSIONS

The following conclusions are made from the finite element parametric study reported in the
paper:

(1) Natural frequencies of cable networks are independent of the axial rigidity of an
individual cable and are primarily dependent on tension and secondarily on rise/span ratio.

(2) If the linear dimensions of the cable net system are varied while all other basic
parameters are held unchanged, then the frequencies of the network are inversely proportional
to the linear dimension. However, the mode shapes are not influenced by the change in linear
dimension.

(3) Modal configurations are independent of the magnitude of the pretension, but the
squares of the first few frequencies increase linearly with pretension. For higher modes at high
prestress value, this relationship is slightly nonlinear.

(4) For a rise/span ratio of zero, i.e. for flat networks, the frequencies are closely related to
those of a taut cable of the system. For 3-D cable networks having moderate curvatures the
transverse modes yield considerably lower frequencies than do the in-plane modes. Unless the
network is excessively deep, only transverse modes need by considered in analysis. In the case
of 3-D hypar networks bounded by straight line generators and incorporating straight cables,
the behaviour is similar to that of a single taut cable in the system. In general, as the rise/span
ratio is increased, there occurs a transition in modal configurations requiring reordering of the
mode shapes corresponding to the ordered array of frequencies. The value of rise/span ratio
corresponding to the transition point yields maximum frequency for the lowest mode.

(5) The squares of frequencies increase linearly with curvature of the network, whereas
mode shapes are independent of curvature.

It can be seen, therefore, that the finite element technique proves to be effective in giving an
insight into the general characteristics of cable structures. The procedure effectively reveals the
general order of magnitude and influence of various parameters on the spectrum of frequencies
of a cable net.
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